Authors: Ehsan Nowroozi, Yassine Mekdad, Mohammad Hajian Berenjestanadi, Mauro Conti, and Abdeslam EL Fergougui Conference Detail: IEEE Transactions on Network and Service Management (IEEE TNSM), April 2022

Abstract:

Convolutional Neural Networks (CNNs) models are one of the most frequently used deep learning networks, and extensively used in both academia and industry. Recent studies demonstrated that adversarial attacks against such models can maintain their effectiveness even when used on models other than the one targeted by the attacker. This major property is known as transferability, and makes CNNs ill-suited for security applications. In this paper, we provide the first comprehensive study which assesses the robustness of CNN-based models for computer networks against adversarial transferability. Furthermore, we investigate whether the transferability property issue holds in computer networks applications. In our experiments, we first consider five different attacks: the Iterative Fast Gradient Method (I-FGSM), the Jacobian-based Saliency Map (JSMA), the Limited-memory Broyden Fletcher Goldfarb Shanno BFGS (L-BFGS), the Projected Gradient Descent (PGD), and the DeepFool attack. Then, we perform these attacks against three well-known datasets: the Network-based Detection of IoT (N-BaIoT) dataset, the Domain Generating Algorithms (DGA) dataset, and the RIPE Atlas dataset. Our experimental results show clearly that the transferability happens in specific use cases for the I-FGSM, the JSMA, and the LBFGS attack. In such scenarios, the attack success rate on the target network range from 63.00% to 100%. Finally, we suggest two shielding strategies to hinder the attack transferability, by considering the Most Powerful Attacks (MPAs), and the mismatch LSTM architecture.

Paper Link

Demystifying the Transferability of Adversarial Attacks in Computer Networks

CNN-based detection of generic contrast adjustment with JPEG post-processing

Conference Paper1
Authors: Mauro Barni, Andrea Costanzo, Ehsan Nowroozi, Benedetta Tondi
Year: 2018
Abstract: Detection of contrast adjustments in the presence of JPEG post processing is known to be a challenging task. JPEG post processing is often applied innocently, as JPEG is the most common image format, or it may correspond to a laundering attack, when it is purposely applied to erase the traces of manipulation. In this paper, we propose a CNN-based detector for generic contrast adjustment, which is robust to JPEG compression……